Select languageSelect language
Institute of Physiology and Pathophysiology

Single Molecules

Figure 1: Schematic experimental set-up: actin filaments move over a surface of myosin or heavy meromyosin
Figure 2: Movement of fluorescently labeled actin filaments recorded with a highly sensitive CCD camera

Molecular dynamics in the in vitro motility assay

The ability of heart and skeletal muscle to contract is based on the fundamental interaction of the two contractile proteins actin and myosin. This basic interaction can be studied in the in vitro motility assay originally devised by Kron and Spudich (1986), where fluorescently labeled actin filaments move over a surface of immobilised myosin or heavy meromyosin. The motion of actin filaments is recorded with a highly sensitive fluorescence imaging set-up.

 

Many parameters of this motion have been shown to be of significant importance for our understanding of the acto-myosin interaction, as e.g. the filament velocity is thought to be directly correlated to the unloaded shortening velocity of muscle fibers and therefore a direct reflection of the cross-bridge turnover rate. Also this assay is ideally suited to screen the functional domains of myosin, such as the nucleotide binding site, the actin binding site, the converter region and the lever arm. Furthermore myosin isoforms and actin mutants can be selectively studied in this assay.

 

more movies

 

 

Force measurements with optical tweezers

Optical tweezers is the name of a technique for holding small objects such as polystyrene beads in the focus of a laser beam. The diffraction of the laser at the bead surface produces a force that always directs the bead towards the laser focus. This effect is simply due to the geometry of the configuration and can be applied to measure very small forces, like the force between a single myosin and actin molecule.


Recent Publications

*

Improving electrical properties of iPSC-cardiomyocytes by enhancing Cx43 expression. J Mol Cell Cardiol. 2018 Jul;120:31-41. doi: 10.1016/j.yjmcc.2018.05.010. Epub 2018 May 16.

*

Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5556-E5565. doi: 10.1073/pnas.1801366115. Epub 2018 May 23.

*

The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J. 2018 Jun 7:fj201800246R. doi: 10.1096/fj.201800246R. [Epub ahead of print]

*

Persistent sodium current modulates axonal excitability in CA1 pyramidal neurons. J Neurochem. 2018 Jun 4. doi: 10.1111/jnc.14479. [Epub ahead of print]

*

Metabolic modulation of neuronal gamma-band oscillations. Pflugers Arch. 2018 May 28. doi: 10.1007/s00424-018-2156-6. [Epub ahead of print]

*

The lncRNA CASC9 and RNA binding protein HNRNPL form a complex and co-regulate genes linked to AKT signaling. Hepatology. 2018 May 23. doi: 10.1002/hep.30102. [Epub ahead of print]

*

Early Blood-Brain Barrier Disruption in Ischemic Stroke Initiates Multifocally Around Capillaries/Venules. Stroke. 2018 Jun;49(6):1479-1487. doi: 10.1161/STROKEAHA.118.020927. Epub 2018 May 14.

*

Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol. 2018 Jun;16:113-122. doi: 10.1016/j.redox.2018.02.018. Epub 2018 Mar 1.

*

CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients. J Inflamm (Lond). 2018 May 16;15:10. doi: 10.1186/s12950-018-0186-7. eCollection 2018.

*

In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways. Sci Rep. 2018 May 2;8(1):6886. doi: 10.1038/s41598-018-25061-z.

*

Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia. 2018 May;66(5):920-933. doi: 10.1002/glia.23292. Epub 2018 Jan 19.

*

Parallel detection of theta and respiration-coupled oscillations throughout the mouse brain. Sci Rep. 2018 Apr 24;8(1):6432. doi: 10.1038/s41598-018-24629-z.

*

Endothelial progenitor cells accelerate endothelial regeneration in an in vitro model of Shigatoxin-2a-induced injury via soluble growth factors. Am J Physiol Renal Physiol. 2018 Mar 7. doi: 10.1152/ajprenal.00633.2017. [Epub ahead of print]


Institute of
Physiology and Pathophysiology

Heidelberg University

Im Neuenheimer Feld 326

69120 Heidelberg

Germany

Phone:+49 6221 54-4035
Fax:+49 6221 54-4038
E-mail:sekretariat.hecker@
physiologie.uni-heidelberg.de