Select languageSelect language
Institut für Physiologie und Pathophysiologie

Arbeitsgebiete

Sauerstoffmangel im Gehirn

Unsere Arbeitsgruppe untersucht, welche Folgen Sauerstoffmangel (Hypoxie) im Gehirn hat. Die Gewebehypoxie im Gehirn ist ein zentrales Problem bei verschiedenen Erkrankungen, so bei Ischämie (Schlaganfall), Tumoren, Schädel-Hirn-Verletzungen, Höhenkrankheit und Epilepsie. Die Minderversorgung der Zellen mit Sauerstoff kann durch ein vermindertes Angebot oder einen gesteigerten Verbrauch bedingt sein. Deshalb steht das neurovaskuläre Zusammenspiel, das auch die glialen Zellen mit einschließt, im Zentrum unseres Interesses. Im Speziellen untersuchen wir zwei hypoxiebedingte Vorgänge: 1) die Aktivierung endogener Faktoren, welche Nervenzellen vor dem Absterben bewahren oder regenerieren (Neuroprotektion und Neurogenese) und 2) die Öffnung der Blut-Hirn-Schranke mit Ausbildung eines Hirnödems. Wir nutzen verschiedene in vivo Versuchsmodelle (Hypoxiekammer, Ischämiemodelle), welche auch transgene Tiere umfassen, und kombinieren sie mit modernen molekularbiologischen Methoden. Wir hoffen, aus der Analyse und Charakterisierung dieser endogenen Schutzreaktionen Hinweise für neue therapeutische Maßnahmen für den Menschen zu finden.

 

1) Neuroprotektion und Neurogenese


Die Gewebehypoxie wird von verschiedenen Sauerstoffsensoren (Prolylhydoxylasen, PHD) registriert, welche dann über eine Aktivierung spezifischer Transkriptionsfaktoren (hypoxia-inducible factors, HIF) zur Induktion von neurogenen und neuroprotektiven Faktoren, wie zum Beispiel Vascular Endothelial Growth Factor (VEGF) oder Erythropoietin (Epo), führen. Ziel unserer Forschung ist es, diese Mechanismen im Detail zu verstehen und sie positiv zu beeinflussen.




Hirn-spezifische Überexpression von VEGF vermindert die Größe der Infarkt-Region (heller Bereich). Quantifizierung der Infarkt-Größe an Cresylviolett-gefärbten Schnitten von Hirngewebe ergab bei VEGF-transgenen Mäusen (VEGF-tg) im Vergleich zu nicht-transgenen Kontrollen aus dem gleichen Wurf (ntg) eine signifikante Verminderung um 40%.

 

aus Wang et al.; Brain (2005); 128: 52-63

2) Blut-Hirn-Schranke


VEGF hat neben seinen positiven Eigenschaften (Neuroprotektion, Neurogenese, Angiogenese) aber einen nachteiligen Effekt auf die Blut-Hirn-Schranke (BHS), der den unmittelbaren therapeutischen Einsatz schwierig macht: VEGF führt zur Öffnung der BHS und damit zur Ausbildung eines Hirnödems. Wir untersuchen die molekularen Mechanismen dieser Öffnung durch Charakterisierung der Vorgänge an den endothelialen Zell-Zell-Kontakten (Tight Junctions) und der extrazellulären Matrix mit dem Ziel, durch Intervention die Ödembildung zu reduzieren, ohne die positiven neuroprotektiven Eigenschaften zu verlieren.

 


Hypoxie führt zu einer Neuordnung des  Tight Junction-Proteins Occludin und zur Bildung von Lücken. Mäuse wurden für 48 Stunden 20% (Kontrolle) oder 8% Sauerstoff (Hypoxie) ausgesetzt. Coronale Hirnschnitte wurden immunhistochemisch für Occludin (grün) und CD31 (rot) , und Kerne mit DAPI (blau) gefärbt. Dreidimensionale Rekonstruktion nach Konfokaler Mikroskopie zeigt eine Neuordnung von Occludin und die Bildung von Lücken (Pfeilspitzen) nach Hypoxie, im Vergleich zur durchgängigen, eindeutig linearen Färbung (Pfeile) in Kontrollen.

 

aus Bauer et al.; J Cereb Blood Flow Metab (2010); 30: 837-848.





Neue Publikationen

*

Alterations of distributed neuronal network oscillations during acute pain in freely-moving mice. IBRO Rep. 2020 Dec;9:195-206. doi: 10.1016/j.ibror.2020.08.001. eCollection 2020 Dec. Epub 2020 Aug 11.

*

Neuronal gamma oscillations and activity-dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue. J Neurosci Res. 2020 Oct;98(10):1953-1967. doi: 10.1002/jnr.24689. Epub 2020 Jul 7.

*

Synchronicity of excitatory inputs drives hippocampal networks to distinct oscillatory patterns. Hippocampus. 2020 Oct;30(10):1044-1057. doi: 10.1002/hipo.23214. Epub 2020 May 15.

*

Processing of hippocampal network activity in the receiver network of the medial entorhinal cortex layer V. J Neurosci. 2020 Sep 25:JN-RM-0586-20. doi: 10.1523/JNEUROSCI.0586-20.2020. Online ahead of print.

*

Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C=C position-resolved MS2 imaging. Anal Chem. 2020 Sep 12. doi: 10.1021/acs.analchem.0c03150. Online ahead of print.

*

VEGF-D Downregulation in CA1 Pyramidal Neurons Exerts Asymmetric Changes of Dendritic Morphology without Correlated Electrophysiological Alterations. Neuroscience. 2020 Sep 10:S0306-4522(20)30578-9. doi: 10.1016/j.neuroscience.2020.09.012. Online ahead of print.

*

Anesthetics and plants: no pain, no brain, and therefore no consciousness. Protoplasma. 2020 Sep 2. doi: 10.1007/s00709-020-01550-9. Online ahead of print.

*

Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020 Sep;19(9):609-633. doi: 10.1038/s41573-020-0072-x. Epub 2020 Jul 24.

*

Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol. 2020 Aug 14;S1084-9521(19)30197-1. doi: 10.1016/j.semcdb.2020.08.001. Online ahead of print.

*

GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J Neuroinflammation. 2020 Aug 11;17(1):235. doi: 10.1186/s12974-020-01903-4.

*

Inhibition of cardiac Kv4.3 (Ito) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine. Eur J Pharmacol. 2020 Aug 5;880:173159. doi: 10.1016/j.ejphar.2020.173159. Epub 2020 Apr 29.

*

Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav Immun. 2020 Aug;88:802-814. doi: 10.1016/j.bbi.2020.05.052. Epub 2020 May 21.

*

Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure. iScience. 2020 Jul 24;23(7):101316. doi: 10.1016/j.isci.2020.101316. Epub 2020 Jun 27.

*

Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations. J Cereb Blood Flow Metab. 2019 Dec 16:271678X19892657. doi: 10.1177/0271678X19892657. [Epub ahead of print

*

The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms. J Cereb Blood Flow Metab. 2019 Nov 13:271678X19887777. doi: 10.1177/0271678X19887777. [Epub ahead of print]


Institut für
Physiologie und Pathophysiologie

Universität Heidelberg

Im Neuenheimer Feld 326

69120 Heidelberg

Telefon:+49 6221 54-4056
Telefax:+49 6221 54-6364
E-Mail:susanne.bechtel@
physiologie.uni-heidelberg.de