Select languageSelect language
Institut für Physiologie und Pathophysiologie

Arbeitsgebiete

Fast Network Oscillations


Rhythmic activity is a key functional feature of the brain, as evident from the well-known EEG-rhythms. Meanwhile, many neuroscientists agree that such network oscillations are «meaningful» and provide an important background for temporal coding of information. In our group we focus on one type of network oscillations in the rodent hippocampus, namely «ripples» at ~200 Hz as originally described by John O´Keefe, G. Buszáki and others. We want to elucidate the precise mechanisms by which neurons are entrained to fire at high precision within these short (5 ms) cycles. Moreover, we would like to find out why certain neurons participate in this network while others do not.

Function of GABAergic Synapses

The complex organisation of central synapses offers multiple mechanisms for regulation and modulation of synaptic strength. We focus on inhibitory synapses in the mammalian CNS which use GABA (gamma-aminobutyric acid) as transmitter. The availability of GABA is regulated by its synthesis, degradation and after release-uptake. In situations of over-excitability, the GABA-synthetizing enzyme GAD is up-regulated while a decrease of neuronal activity leads to a down-regulation of GAD. Thus, cellular GABA content seems to be an activity-dependent, variable parameter. We propose that the presynaptic GABA metabolism is a true and autonomous mechanism of synaptic plasticity. We are presently testing this hypothesis using various electrophysiological, histological and biochemical techniques.

Synaptic Physiology and Pharmacology of Epilepsy


Neue Publikationen

*

Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc Natl Acad Sci U S A. 2019 Feb 19. pii: 201813562. doi: 10.1073/pnas.1813562116. [Epub ahead of print]

*

Methylglyoxal evokes acute Ca2+ transients in distinct cell types and increases agonist-evoked Ca2+ entry in endothelial cells via CRAC channels. Cell Calcium. 2019 Mar;78:66-75. doi: 10.1016/j.ceca.2019.01.002. Epub 2019 Jan 9.

*

EphB2-dependent signaling promotes neuronal excitotoxicity and inflammation in the acute phase of ischemic stroke. Acta Neuropathol Commun. 2019 Feb 5;7(1):15. doi: 10.1186/s40478-019-0669-7.

*

Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One. 2019 Jan 15;14(1):e0209228. doi: 10.1371/journal.pone.0209228. eCollection 2019.

*

Medikamentöse Varikosetherapie aus der Perspektive experimenteller Modelle. Praxis (Bern 1994). 2019 Jan;108(1):31-36. doi: 10.1024/1661-8157/a003147.

*

Selective vulnerability of αOFF retinal ganglion cells during onset of autoimmune optic neuritis. Neuroscience. 2018 Nov 21;393:258-272. doi: 10.1016/j.neuroscience.2018.07.040. Epub 2018 Aug 1.

*

The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J2018 Nov;32(11):6159-6173. Epub 2018 Jun 7.

*

Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J. 2018 Nov 1:fj201801594R. doi: 10.1096/fj.201801594R. [Epub ahead of print]

*

Reduction of Transplant Vasculopathy by Intraoperative Nucleic Acid-based Therapy in a Mouse Aortic Allograft Model. Thorac Cardiovasc Surg. 2018 Oct 23. doi: 10.1055/s-0038-1673633. [Epub ahead of print]


Institut für
Physiologie und Pathophysiologie

Universität Heidelberg

Im Neuenheimer Feld 326

69120 Heidelberg

Telefon:+49 6221 54-4035
Telefax:+49 6221 54-4038
E-Mail:sekretariat.hecker@
physiologie.uni-heidelberg.de