Select languageSelect language
Institut für Physiologie und Pathophysiologie

Decoy-Oligodesoxynukleotide für die Therapie der Herzinsuffizienz

Diese Seite benötigt JavaScript für volle Funktionalität.

Ziel dieses Arbeitsgebiets ist die präklinische Validierung von Decoy- Oligodesoxynukleotiden (ODN) als neue Wirkstoffklasse zur Prävention bzw. Therapie der Herzinsuffizienz.

 

Decoy ODNs (decoy = Köder, Lockvogel) sind doppelsträngige, meist 15 bis 20 Basenpaare kurze synthestische DNA-Moleküle, die spezifisch die DNA-Bindungsstelle bestimmter Regulatorproteine (Transkriptionsfaktoren) im Genom nachahmen. Sie interferieren mit der zumeist aberranten Expression krankheitsrelevanter Gene, indem sie gezielt an den für die Expression dieser Gene verantwortlichen Transkriptionsfaktor binden und ihn damit hemmen.

 

Drei verschiedene Transkriptionsfaktoren werden als potentielle therapeutische Zielmoleküle untersucht. Wichtigstes Kriterium für ihre Auswahl ist ihre nachgewiesene Beteiligung an der Expression von Genen, die für die Ausprägung der verschiedenen Varianten der terminalen Herzinsuffizienz primär verantwortlich zu sein scheinen.

In der Abteilung für Herz- und Kreislaufphysiologie arbeitet man an Design und Optimierung der entsprechenden Decoy ODNs.  An Zusammenarbiet mit  anderen Arbeitsgruppen an der Universität Heidelberg wurden bereits für den Nachweis ihrer Wirksamkeit geeignete in vitro- und in vivo-Modelle entwickelt.

 

 



Mit fluoreszierenden Decoy ODNs (rot) beladene Aggregate aus Herzmuskelzellen der Ratte (Zellkerne: blau)


Neue Publikationen

*

Alterations of distributed neuronal network oscillations during acute pain in freely-moving mice. IBRO Rep. 2020 Dec;9:195-206. doi: 10.1016/j.ibror.2020.08.001. eCollection 2020 Dec. Epub 2020 Aug 11.

*

VEGF-D Downregulation in CA1 Pyramidal Neurons Exerts Asymmetric Changes of Dendritic Morphology without Correlated Electrophysiological Alterations. Neuroscience. 2020 Nov 10;448:28-42. doi: 10.1016/j.neuroscience.2020.09.012. Epub 2020 Sep 11.

*

The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms. J Cereb Blood Flow Metab. 2020 Nov;40(11):2225-2239. doi: 10.1177/0271678X19887777. Epub 2019 Nov 13.

*

Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C=C position-resolved MS2 imaging. 2020 Oct 20;92(20):14130-14138. doi: 10.1021/acs.analchem.0c03150. Epub 2020 Sep 28.

*

Neuronal gamma oscillations and activity-dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue. J Neurosci Res. 2020 Oct;98(10):1953-1967. doi: 10.1002/jnr.24689. Epub 2020 Jul 7.

*

Synchronicity of excitatory inputs drives hippocampal networks to distinct oscillatory patterns. Hippocampus. 2020 Oct;30(10):1044-1057. doi: 10.1002/hipo.23214. Epub 2020 May 15.

*

Processing of hippocampal network activity in the receiver network of the medial entorhinal cortex layer V. J Neurosci. 2020 Sep 25:JN-RM-0586-20. doi: 10.1523/JNEUROSCI.0586-20.2020. Online ahead of print.

*

Anesthetics and plants: no pain, no brain, and therefore no consciousness. Protoplasma. 2020 Sep 2. doi: 10.1007/s00709-020-01550-9. Online ahead of print.

*

Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020 Sep;19(9):609-633. doi: 10.1038/s41573-020-0072-x. Epub 2020 Jul 24.

*

Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol. 2020 Aug 14;S1084-9521(19)30197-1. doi: 10.1016/j.semcdb.2020.08.001. Online ahead of print.

*

GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J Neuroinflammation. 2020 Aug 11;17(1):235. doi: 10.1186/s12974-020-01903-4.

*

Inhibition of cardiac Kv4.3 (Ito) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine. Eur J Pharmacol. 2020 Aug 5;880:173159. doi: 10.1016/j.ejphar.2020.173159. Epub 2020 Apr 29.

*

Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav Immun. 2020 Aug;88:802-814. doi: 10.1016/j.bbi.2020.05.052. Epub 2020 May 21.

*

Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations. J Cereb Blood Flow Metab. 2019 Dec 16:271678X19892657. doi: 10.1177/0271678X19892657. [Epub ahead of print


Institut für
Physiologie und Pathophysiologie

Universität Heidelberg

Im Neuenheimer Feld 326

69120 Heidelberg

Telefon:+49 6221 54-4056
Telefax:+49 6221 54-6364
E-Mail:susanne.bechtel@
physiologie.uni-heidelberg.de