Select languageSelect language
Institut für Physiologie und Pathophysiologie

Prof. Dr. med. Oliver Kann

Publikationsliste

Markierte Titel sind mit dem jeweiligen Abstract auf einer frei zugänglichen Webseite verlinkt.

63.

Chausse B, Kakimoto PA, Kann O. Microglia and lipds: how metabolism controls brain innate immunity. Semin Cell Dev Biol. 2020 Aug 13. S1084-9521(19)30197-1. doi: 10.1016/j.semcdb.2020.08.001. [Epub ahead of print]

62.

Chausse B, Lewen A, Poschet G, Kann O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ.  Brain Behav Immun. 2020 May 21:S0889-1591(20)30209-9. doi: 10.1016/j.bbi.2020.05.052. [Epub ahead of print]

61.

Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour MC, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave K-A, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020 Sep;19(9):609-633. doi: 10.1038/s41573-020-0072-x.

60.

Dikmen HO, Hemmerich M, Lewen A, Hollnagel JO, Chausse B, Kann O. GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J Neuroinflammation. 2020 Aug 11; 17(1):235. doi: 10.1186/s12974-020-01903-4.

59.

Geschwill P, Kaiser ME, Grube P, Lehmann N, Thome C, Draguhn A, Hollnagel JO, Both M. Synchronicity of excitatory inputs drives hippocampal networks to distinct oscillatory patterns. Hippocampus. 2020 May 15. doi: 10.1002/hipo.23214. [Epub ahead of print]

58.

Hollnagel JO, Cesetti T, Schneider J, Vazetdinova A, Valiullina-Rakhmatullina F, Lewen A, Rozov A, Kann O. Lactate attenuates synaptic transmission and affects brain rhythms featuring high energy expenditure. iScience. 2020 Jul 24; 23(7):101316. doi 10.1016/j.isci.2020.101316.

57.

Lewen A, Ta TT, Cesetti T, Hollnagel JO, Papageorgiou IE, Chausse B, Kann O. Neuronal gamma oscillations and activity-dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue. J Neurosci Res. 2020 Jul 7; 98(10):1953-1967. doi: 10.1002/jnr.24689.

56.

Bas-Orth C, Schneider J, Lewen A, McQueen J, Hasenpusch-Theil K, Theil T, Hardingham GE, Bading H, Kann O. The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms. J Cereb Blood Flow Metab. 2019 Nov 13:271678X19887777. doi:10.1177/0271678X19887777.

55.

Elzoheiry S, Lewen A, Schneider J, Both M, Hefter D, Boffi JC, Hollnagel JO, Kann O. Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations. J Cereb Blood Flow Metab. 2019 Dec 16:271678X19892657. doi:10.1177/0271678X19892657.

54.

Hollnagel JO, Elzoheiry S, Gorgas K, Kins S, Beretta CA, Kirsch J, Kuhse J, Kann O, Kiss E. Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One. 2019 Jan 15;14(1):e0209228. doi: 10.1371/journal.pone.0209228.

53.

Ivens S, Çalışkan G, Papageorgiou I, Cesetti T, Malich A, Kann O, Heinemann U, Stork O, Albrecht A. Persistent increase in ventral hippocampal long-term potentiation by juvenile stress: A role for astrocytic glutamine synthetase. Glia. 2019 Dec;67(12):2279-2293. doi: 10.1002/glia.23683.

52.

Kann O, Köhling R, Speckmann E-J (2019). Gliazellen (Glial cells). In: Physiologie - das Lehrbuch (Physiology - the textbook), 7th ed., Editors: Speckmann, E.-J., Hescheler, J., Köhling, R., Urban & Fischer Verlag/Elsevier GmbH: 49-52. ISBN: 978-3-437-41358-2. [Article in German]

51.

Kann O, Speckmann, E-J, Kuschinsky, W (2019). Blut-Hirn-Schranke, Liquor cerebrospinalis (Blood-brain barrier, cerebrospinal fluid). In: Physiologie - das Lehrbuch (Physiology - the textbook), 7th ed., Editors: Speckmann, E.-J., Hescheler, J., Köhling, R., Urban & Fischer Verlag/Elsevier GmbH: 52-54. ISBN: 978-3-437-41358-2. [Article in German]

50.

Kann O, Speckmann E-J, Kuschinsky W (2019). Hirndurchblutung und Energiemetabolismus (Cerebral blood flow and energy metabolism). In: Physiologie - das Lehrbuch (Physiology - the textbook), 7th ed., Editors: Speckmann, E.-J., Hescheler, J., Köhling, R., Urban & Fischer Verlag/Elsevier GmbH: 54-58. ISBN: 978-3-437-41358-2. [Article in German]

49.

Kirschbaum E, Haußmann M, Wolf S, Sonntag H, Schneider J, Elzoheiry S, Kann O, Durstewitz D, Hamprecht FA (2019). LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos. In International Conference on Learning Representations (ICLR), Proceedings. 28 pages.

48.

Schneider J, Berndt N, Papageorgiou IE, Maurer J, Bulik S, Both M, Draguhn A, Holzhütter HG, Kann O. Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus. J Cereb Blood Flow Metab. 2019 May;39(5):859-873. doi: 10.1177/0271678X17740091.

47.

Ta TT, Dikmen HO, Schilling S, Chausse B, Lewen A, Hollnagel JO, Kann O. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc Natl Acad Sci U S A. 2019 Feb 19116(10):4637-4642. doi: 10.1073/pnas.1813562116.

46.

Berndt N, Rösner J, Haq RU, Kann O, Kovács R, Holzhütter HG, Spies C, Liotta A. Possible neurotoxicity of the anesthetic propofol: evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices. Arch Toxicol. 2018 Oct;92(10):3191-3205. doi: 10.1007/s00204-018-2295-8.

45.

Papageorgiou IE, Valous NA, Lahrmann B, Janova H, Klaft ZJ, Koch A, Schneider UC, Vajkoczy P, Heppner FL, Grabe N, Halama N, Heinemann U, Kann O. Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia. 2018 May;66(5):920-933. doi: 10.1002/glia.23292.

44.

Vodovozov W, Schneider J, Elzoheiry S, Hollnagel JO, Lewen A, Kann O. Metabolic modulation of neuronal gamma-band oscillations. Pflugers Arch. 2018 Sep;470(9):1377-1389. doi: 10.1007/s00424-018-2156-6.

43.

Draguhn A, Kann O. "Schmerznerven" - wie aus Schädigungen von Körpergewebe Schmerzen werden ("Pain nerves" - how tissue injury results in pain. In: Schmerz, lass' nach! Eine Einführung in die Grundbegriffe der Schmerzmedizin. Kirsch J (Ed.), Springer Verlag, 2017, pp 21-29. ISBN: 978-3-662-55257-2. [Article in German]

42.

Blank T, Detje CN, Spieß A, Hagemeyer N, Brendecke SM, Wolfart J, Staszewski O, Zöller T, Papageorgiou I, Schneider J, Paricio-Montesinos R, Eisel UL, Manahan-Vaughan D, Jansen S, Lienenklaus S, Lu B, Imai Y, Müller M, Goelz SE, Baker DP, Schwaninger M, Kann O, Heikenwalder M, Kalinke U, Prinz M. Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment. Immunity. 2016 Apr 19;44(4):901-912. doi: 10.1016/j.immuni.2016.04.005.

41.

Hefter D, Kaiser M, Weyer SW, Papageorgiou IE, Both M, Kann O, Müller UC, Draguhn A. Amyloid Precursor Protein Protects Neuronal Network Function after Hypoxia via Control of Voltage-Gated Calcium Channels. J Neurosci. 2016 Aug 10;36(32):8356-71. doi: 10.1523/JNEUROSCI.4130-15.2016.

40.

Kann O. The interneuron energy hypothesis: implications for brain disease. Neurobiol Dis. 2016 Jun;90:75-85. doi: 10.1016/j.nbd.2015.08.005. Epub 2015 Aug 16.

39.

Kann O, Hollnagel JO, Elzoheiry S, Schneider J. Energy and Potassium Ion Homeostasis during Gamma Oscillations. Front Mol Neurosci. 2016 Jun 16;9:47. doi: 10.3389/fnmol.2016.00047. Review.

38.

Papageorgiou IE, Lewen A, Galow LV, Cesetti T, Scheffel J, Regen T, Hanisch UK, Kann O. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):212-7. doi: 10.1073/pnas.1513853113. Epub 2015 Dec 22.

37.

Berndt N, Kann O, Holzhütter HG. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients. J Cereb Blood Flow Metab. J Cereb Blood Flow Metab. 2015 Sep;35(9):1494-506. doi: 10.1038/jcbfm.2015.70. Epub 2015 Apr 22.

36.

Papageorgiou IE, Fetani AF, Lewen A, Heinemann U, Kann O. Widespread activation of microglial cells in the hippocampus of chronic epileptic rats correlates only partially with neurodegeneration. Brain Struct Funct. 2015 Jul;220(4):2423-39. doi: 10.1007/s00429-014-0802-0. Epub 2014 May 31.

35.

Sandow N, Kim S, Raue C, Päsler D, Klaft ZJ, Antonio LL, Hollnagel JO, Kovacs R, Kann O, Horn P, Vajkoczy P, Holtkamp M, Meencke HJ, Cavalheiro EA, Pragst F, Gabriel S, Lehmann TN, Heinemann U. Drug Resistance in Cortical and Hippocampal Slices from Resected Tissue of Epilepsy Patients: No Significant Impact of P-Glycoprotein and Multidrug Resistance-Associated Proteins. Front Neurol. 2015 Feb 18;6:30. eCollection 2015.

34.

Schneider J, Lewen A, Ta TT, Galow LV, Isola R, Papageorgiou IE, Kann O. A reliable model for gamma oscillations in hippocampal tissue. J Neurosci Res. 2015 Jul;93(7):1067-78. doi: 10.1002/jnr.23590. Epub 2015 Mar 24.

33.

Galow LV, Schneider J, Lewen A, Ta TT, Papageorgiou IE, Kann O. Energy substrates that fuel fast neuronal network oscillations. Front Neurosci. 2014 Dec 5;8:398. doi: 10.3389/fnins.2014.00398. eCollection 2014.

32.

Kann O, Papageorgiou IE, Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab. 2014 Aug;34(8):1270-82. doi: 10.1038/jcbfm.2014.104. Epub 2014 Jun 4.

31.

Huchzermeyer C, Berndt N, Holzhütter HG, Kann O. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network. J Cereb Blood Flow Metab. 2013 Feb;33(2):263-71. doi: 10.1038/jcbfm.2012.165. Epub 2012 Nov 21.

30.

Kreis P, Hendricusdottir R, Kay L, Papageorgiou IE, van Diepen M, Mack T, Ryves J, Harwood A, Leslie NR, Kann O, Parsons M, Eickholt BJ. Phosphorylation of the Actin Binding Protein Drebrin at S647 Is Regulated by Neuronal Activity and PTEN. PLoS One. 2013 Aug 5;8(8):e71957. doi: 10.1371/journal.pone.0071957. Print 2013.

29.

Kann O. The energy demand of fast neuronal network oscillations: insights from brain slice preparations. Front Pharmacol. 2012;2:90. Epub 2012 Jan 10.

28.

Kann O, Taubenberger N, Huchzermeyer C, Papageorgiou IE, Benninger F, Heinemann U, Kovács R. Muscarinic receptor activation determines the effects of store-operated Ca(2+)-entry on excitability and energy metabolism in pyramidal neurons. Cell Calcium. 2012 Jan;51(1):40-50. Epub 2011 Nov 14.

27.

Liotta A, Rösner J, Huchzermeyer C, Wojtowicz A, Kann O, Schmitz D, Heinemann U, Kovács R. Energy demand of synaptic transmission at the hippocampal Schaffer-collateral synapse. J Cereb Blood Flow Metab. 2012 Nov;32(11):2076-83. doi: 10.1038/jcbfm.2012.116. Epub 2012 Aug 29.

26.

Kann O, Huchzermeyer C, Kovács R, Wirtz S, Schuelke M. Reply: Impaired mitochondrial function abolishes gamma oscillations in the hippocampus through an effect on fast-spiking interneurons. Brain (2011) 134(7): e181 doi:10.1093/brain/awr019

(online access may require subscription to the journal)

25.

Kann O, Huchzermeyer C, Kovács R, Wirtz S, Schuelke M. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain. 2011 Feb;134(Pt 2):345-58. Epub 2010 Dec 22.

24.

Papageorgiou IE, Gabriel S, Fetani AF, Kann O, Heinemann U. Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia 2011 Nov;59(11):1706–18. doi: 10.1002/glia.21217. Epub 2011 Jul 20.

23.

Malinska D, Kulawiak B, Kudin AP, Kovacs R, Huchzermeyer C, Kann O, Szewczyk A, Kunz WS. Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1163-70. Epub 2010 Mar 6.

22.

Kovács R, Rabanus A, Otáhal J, Patzak A, Kardos J, Albus K, Heinemann U, Kann O. Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J Neurosci. 2009 Jul 1;29(26):8565-77.

21.

Cheung G, Kann O, Kohsaka S, Făerber K, Kettenmann H. GABAergic activities enhance macrophage inflammatory protein-1alpha release from microglia (brain macrophages) in postnatal mouse brain. J Physiol. 2009 Feb 15;587(Pt 4):753-68. Epub 2008 Dec 1.

20.

Huchzermeyer C, Albus K, Gabriel HJ, Otáhal J, Taubenberger N, Heinemann U, Kovács R, Kann O. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state. J Neurosci. 2008 Jan 30;28(5):1153-62.

19.

Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, Makwana M, Brandner S, Adams RH, Jefferys JG, Kann O, Behrens A. ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J. 2007 Nov 28;26(23):4891-901. Epub 2007 Nov 1.

18.

Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol. 2007 Feb;292(2):C641-57. Epub 2006 Nov 8. Review.

17.

Jandová K, Päsler D, Antonio LL, Raue C, Ji S, Njunting M, Kann O, Kovács R, Meencke HJ, Cavalheiro EA, Heinemann U, Gabriel S, Lehmann TN. Carbamazepine-resistance in the epileptic dentate gyrus of human hippocampal slices. Brain. 2006 Dec;129(Pt 12):3290-306. Epub 2006 Sep 2.

16.

Heinemann U, Kann O, Remy S, Beck H. Novel mechanisms underlying drug resistance in temporal lobe epilepsy. Adv Neurol. 2006;97:85-95. Review.

15.

Kann O, Kovács R, Njunting M, Behrens CJ, Otáhal J, Lehmann TN, Gabriel S, Heinemann U. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain. 2005 Oct;128(Pt 10):2396-407. Epub 2005 Jun 15.

14.

Kovács R, Kardos J, Heinemann U, Kann O. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures. J Neurosci. 2005 Apr 27;25(17):4260-9.

13.

Kann O, Hoffmann A, Schumann RR, Weber JR, Kettenmann H, Hanisch UK. The tyrosine kinase inhibitor AG126 restores receptor signaling and blocks release functions in activated microglia (brain macrophages) by preventing a chronic rise in the intracellular calcium level. J Neurochem. 2004 Aug;90(3):513-25.

12.

Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci. 2003 Jun 1;23(11):4410-9.

11.

Kann O, Schuchmann S, Buchheim K, Heinemann U. Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat. Neuroscience. 2003;119(1):87-100.

10.

Kann O, Kovács R, Heinemann U. Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures. J Neurophysiol. 2003 Aug;90(2):613-21. Epub 2003 Apr 30.

9.

Kovács R, Schuchmann S, Gabriel S, Kann O, Kardos J, Heinemann U. Free radical-mediated cell damage after experimental status epilepticus in hippocampal slice cultures. J Neurophysiol. 2002 Dec;88(6):2909-18.

8.

Heinemann U, Buchheim K, Gabriel S, Kann O, Kovacs R, Schuchmann S. Cell death and metabolic activity during epileptiform discharges and status epilepticus in the hippocampus. Prog Brain Res. 2002;135:197-210. Review.

7.

Heinemann U, Buchheim K, Gabriel S, Kann O, Kovács R, Schuchmann S. Coupling of electrical and metabolic activity during epileptiform discharges. Epilepsia. 2002;43 Suppl 5:168-73.

6.

Hanisch UK, Prinz M, Angstwurm K, Häusler KG, Kann O, Kettenmann H, Weber JR. The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls. Eur J Immunol. 2001 Jul;31(7):2104-15.

5.

Schuchmann S, Kovacs R, Kann O, Heinemann U, Buchheim K. Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices. Brain Res Brain Res Protoc. 2001 Jul;7(3):267-76.

4.

Lyons SA, Pastor A, Ohlemeyer C, Kann O, Wiegand F, Prass K, Knapp F, Kettenmann H, Dirnagl U. Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2000 Nov;20(11):1537-49.

3.

Möller T, Kann O, Verkhratsky A, Kettenmann H. Activation of mouse microglial cells affects P2 receptor signaling. Brain Res. 2000 Jan 17;853(1):49-59.

2.

Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR, Hanisch UK. Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol. 1999 Oct;58(10):1078-89.

1.

Möller T, Kann O, Prinz M, Kirchhoff F, Verkhratsky A, Kettenmann H. Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. Neuroreport. 1997 Jul 7;8(9-10):2127-31.


Neue Publikationen

*

Alterations of distributed neuronal network oscillations during acute pain in freely-moving mice. IBRO Rep. 2020 Dec;9:195-206. doi: 10.1016/j.ibror.2020.08.001. eCollection 2020 Dec. Epub 2020 Aug 11.

*

Neuronal gamma oscillations and activity-dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue. J Neurosci Res. 2020 Oct;98(10):1953-1967. doi: 10.1002/jnr.24689. Epub 2020 Jul 7.

*

Synchronicity of excitatory inputs drives hippocampal networks to distinct oscillatory patterns. Hippocampus. 2020 Oct;30(10):1044-1057. doi: 10.1002/hipo.23214. Epub 2020 May 15.

*

Processing of hippocampal network activity in the receiver network of the medial entorhinal cortex layer V. J Neurosci. 2020 Sep 25:JN-RM-0586-20. doi: 10.1523/JNEUROSCI.0586-20.2020. Online ahead of print.

*

Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C=C position-resolved MS2 imaging. Anal Chem. 2020 Sep 12. doi: 10.1021/acs.analchem.0c03150. Online ahead of print.

*

VEGF-D Downregulation in CA1 Pyramidal Neurons Exerts Asymmetric Changes of Dendritic Morphology without Correlated Electrophysiological Alterations. Neuroscience. 2020 Sep 10:S0306-4522(20)30578-9. doi: 10.1016/j.neuroscience.2020.09.012. Online ahead of print.

*

Anesthetics and plants: no pain, no brain, and therefore no consciousness. Protoplasma. 2020 Sep 2. doi: 10.1007/s00709-020-01550-9. Online ahead of print.

*

Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020 Sep;19(9):609-633. doi: 10.1038/s41573-020-0072-x. Epub 2020 Jul 24.

*

Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol. 2020 Aug 14;S1084-9521(19)30197-1. doi: 10.1016/j.semcdb.2020.08.001. Online ahead of print.

*

GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J Neuroinflammation. 2020 Aug 11;17(1):235. doi: 10.1186/s12974-020-01903-4.

*

Inhibition of cardiac Kv4.3 (Ito) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine. Eur J Pharmacol. 2020 Aug 5;880:173159. doi: 10.1016/j.ejphar.2020.173159. Epub 2020 Apr 29.

*

Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav Immun. 2020 Aug;88:802-814. doi: 10.1016/j.bbi.2020.05.052. Epub 2020 May 21.

*

Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure. iScience. 2020 Jul 24;23(7):101316. doi: 10.1016/j.isci.2020.101316. Epub 2020 Jun 27.

*

Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations. J Cereb Blood Flow Metab. 2019 Dec 16:271678X19892657. doi: 10.1177/0271678X19892657. [Epub ahead of print

*

The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms. J Cereb Blood Flow Metab. 2019 Nov 13:271678X19887777. doi: 10.1177/0271678X19887777. [Epub ahead of print]


Institut für
Physiologie und Pathophysiologie

Universität Heidelberg

Im Neuenheimer Feld 326

69120 Heidelberg

Telefon:+49 6221 54-4056
Telefax:+49 6221 54-6364
E-Mail:susanne.bechtel@
physiologie.uni-heidelberg.de