Select languageSelect language
Institut für Physiologie und Pathophysiologie

Mathematical Modelling

Computational Methods are particularly useful in close combination with experimental techniques. This allows the direct input of latest experimental results into the model and vice versa. Therefore, we are developing models for calcium regulation or actin-myosin interaction in parallel to our fluorescence microscopy experiments.

 

Calcium regulation

Calcium ions inside the cell are present in various different "states". In addition to the free ions, calcium is also bound to several intrinsic and extrinsic calcium-binding sites (of which the fluorescence indicator is very often the most important one). Calcium ions can also be sequestered in intracellular membrane-bound organelles, for example, mitochondria, the endoplasmic reticulum (ER), or the sarcoplasmic reticulum (SR) of muscle fibers.

 

All these parameters have to be taken into account for the development of suitable models for the complex process of intracellular calcium regulation. As only calcium ions bound to the fluorescence indicator can be experimentally measured, all other quantities have to be derived from these model calculations.

 

The mathematical treatment requires an intelligent simplification of the associated differential equations using inherent symmetries, like cylindrical symmetry in skeletal muscle. Numerical solutions can finally be obtained with the help of a suitable discrete grid for time and space.

 

 

 

 

Modeling molecular motors

Muscle contraction is based on the interaction of only two proteins: actin and myosin. However, there are a number of associated proteins that are responsible for the regulation and tuning of this molecular motor. We are interested in developing a “motility model” that integrates various factors influencing the speed of shortening and force generation.

 


Neue Publikationen

*

Possible neurotoxicity of the anesthetic propofol: evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices. Arch Toxicol. 2018 Oct;92(10):3191-3205. doi: 10.1007/s00204-018-2295-8. Epub 2018 Aug 24.

*

Endothelial progenitor cells accelerate endothelial regeneration in an in vitro model of Shigatoxin-2a-induced injury via soluble growth factors. Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F861-F869. doi: 10.1152/ajprenal.00633.2017. Epub 2018 Mar 7.

*

Strategy for marker-based differentiation of pro- and anti-inflammatory macrophages using matrix-assisted laser desorption/ionization mass spectrometry imaging. Analyst. 2018 Sep 10;143(18):4273-4282. doi: 10.1039/c8an00659h. Epub 2018 Jul 20.

*

Early appearance and spread of fast ripples in the hippocampus in a model of cortical traumatic brain injury. J Neurosci. 2018 Sep 6. pii: 3507-17. doi: 10.1523/JNEUROSCI.3507-17.2018. [Epub ahead of print]

*

Recent advances in hippocampal structure and function. Cell Tissue Res. 2018 Sep;373(3):521-523. doi: 10.1007/s00441-018-2913-z. Epub 2018 Aug 20. doi: 10.1007/s00441-018-2913-z. Editorial. No abstract available.

*

Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions. Cell Tissue Res. 2018 Sep;373(3):671-691. doi: 10.1007/s00441-018-2881-3. Epub 2018 Aug 15. Review.

*

Synaptic entrainment of ectopic action potential generation in hippocampal pyramidal neurons. J Physiol. 2018 Aug 24. doi: 10.1113/JP276720. [Epub ahead of print]

*

Metabolic modulation of neuronal gamma-band oscillations. Pflugers Arch2018 Sep;470(9):1377-1389. doi: 10.1007/s00424-018-2156-6. Epub 2018 May 28.

*

NFAT5 Isoform C Controls Biomechanical Stress Responses of Vascular Smooth Muscle Cells. Front Physiol. 2018 Aug 23;9:1190. doi: 10.3389/fphys.2018.01190. eCollection 2018.

*

Persistent sodium current modulates axonal excitability in CA1 pyramidal neurons. J Neurochem. 2018 Aug;146(4):446-458. doi: 10.1111/jnc.14479. Epub 2018 Aug 1.

*

Selective vulnerability of αOFF retinal ganglion cells during onset of autoimmune optic neuritis. Neuroscience. 2018 Jul 31. pii: S0306-4522(18)30515-3. doi: 10.1016/j.neuroscience.2018.07.040. [Epub ahead of print]

*

Improving electrical properties of iPSC-cardiomyocytes by enhancing Cx43 expression. J Mol Cell Cardiol. 2018 Jul;120:31-41. doi: 10.1016/j.yjmcc.2018.05.010. Epub 2018 May 16.

*

The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J. 2018 Jun 7:fj201800246R. doi: 10.1096/fj.201800246R. [Epub ahead of print]

*

The lncRNA CASC9 and RNA binding protein HNRNPL form a complex and co-regulate genes linked to AKT signaling. Hepatology. 2018 May 23. doi: 10.1002/hep.30102. [Epub ahead of print]


Institut für
Physiologie und Pathophysiologie

Universität Heidelberg

Im Neuenheimer Feld 326

69120 Heidelberg

Telefon:+49 6221 54-4035
Telefax:+49 6221 54-4038
E-Mail:sekretariat.hecker@
physiologie.uni-heidelberg.de