Select languageSelect language
Nummer: 86/2017 vom 14.08.2017

Folgeschäden bei Diabetes: entzündete Leber hebt Cholesterinspiegel

Entzündungsvorgänge in der Leber führen bei Diabetes zu einem erhöhten Cholesterinspiegel und begünstigen so Folgeerkrankungen an den Gefäßen. Das berichten Wissenschaftlerinnen und Wissenschaftler des Helmholtz Zentrums München, der Technischen Universität München (TUM) und des SFB 1118 am Universitätsklinikum Heidelberg in 'Cell Reports'. Dabei stellen sie einen bisher unbekannten Mechanismus vor.


Unter den Folgeerkrankungen bei Menschen mit Diabetes spielen Gefäßkrankheiten eine zentrale Rolle. Erkrankungen des Herz- und Kreislaufsystems sind mit 75 Prozent die häufigste Ursache für Krankenhauseinweisungen und mit 50 Prozent eine häufige Todesursache. Ein wichtiger Risikofaktor für Atherosklerose, Durchblutungsstörungen und Gefäßkomplikationen ist ein erhöhtes Cholesterin.*

 

"Auch wenn der Blutzucker gut eingestellt ist, haben manche Betroffenen ein höheres Risiko für Folgeschäden. Wir wollten verstehen, was dem zugrunde liegt", erklärt Stoffwechselexperte Dr. Mauricio Berriel Diaz, stellvertretender Direktor des Instituts für Diabetes und Krebs (IDC) am Helmholtz Zentrum München. Er leitete die Studie gemeinsam mit Prof. Dr. Stephan Herzig, Direktor des IDC und Lehrstuhlinhaber für Molekulare Stoffwechselkontrolle an der TUM sowie Co-Sprecher des DFG-Sonderforschungsbereichs (SFB) 1118, der sich am Universitätsklinikum Heidelberg mit dem Einfluss von gestörten Stoffwechselvorgängen bei diabetischen Folgeschäden befasst.

 

Die Forschenden untersuchten vor allem Entzündungsprozesse, von denen bekannt ist, dass sie bei zahlreichen Stoffwechselstörungen wie Typ-2-Diabetes und Adipositas vorkommen und wesentlich zu deren Langzeitfolgen beitragen. Konkret konzentrierten sie sich auf den Entzündungsbotenstoff TNF-α (Tumornekrosefaktor α), der bekanntermaßen in der Leber reaktive Sauerstoffspezies (ROS)** erzeugt. Die Wissenschaftler konnten nachweisen, dass diese ROS den Transkriptionsfaktor-Komplex GAbp (GA-binding protein) inaktivieren. Im Versuchsmodell hemmte dieser Verlust wiederum das Protein AMPK, einen Energiesensor der Zelle. In der Folge bildete sich dadurch überschüssiges Cholesterin und es prägten sich typische Merkmale für Atherosklerose aus.

 

Zentrale Rolle bei der Aufrechterhaltung der Leber- und Körperfette

 

"Unsere Daten legen eine zentrale Rolle der Leber für die Entstehung häufiger diabetischer Gefäßerkrankungen nahe", erklärt Erstautorin Dr. Katharina Niopek, Wissenschaftlerin am IDC. "GAbp scheint eine molekularer Stellschraube an der Schnittstelle zwischen Entzündung, Cholesterinhaushalt und Atherosklerose zu sein. Ohne seine schützende Wirkung kommt es zu einer sogenannten Hypercholesterinämie*** und vermehrter Fettablagerung in den Arterien."

 

"Da erste Patientendaten unsere Befunde unterstützten, könnte der neue Signalweg -unabhängig von der Blutzuckereinstellung der Patienten - eine zentrale Komponente bei der Entstehung diabetischer Folgeschäden darstellen, die man therapeutisch ausnutzen könnte", erklärt Studienleiter Stephan Herzig.


Weitere Informationen

* Quelle: Diabetesinformationsdienst "Diabetes und Gefäße".


** Bei reaktiven Sauerstoffspezies handelt es sich um Sauerstoffverbindungen, die in Zellen oxidativen Stress verursachen können. Dazu zählen beispielsweise auch Sauerstoffradikale. Im Organismus entstehen sie sowohl in den Mitochondrien im Rahmen der Zellatmung, aber auch durch Entzündungsprozesse.

 

*** Als Hypercholesterinämie bezeichnet man eine Lipidstoffwechselstörung (Dyslipidämie), die durch einen erhöhten Cholesterinspiegel im Blut gekennzeichnet ist.



Hintergrund:
Mauricio Berriel Diaz und Stephan Herzig sind federführend beim Joint Heidelberg-IDC Translational Diabetes Program, was sie gemeinsam mit Kollegen am Universitätsklinikum in Heidelberg betreiben, von wo aus sie 2015 nach München gewechselt waren.

 

Die Arbeit entstand im Rahmen des DFG Sonderforschungsbereichs (SFB) 1118: Reaktive Metabolite als Ursache diabetischer Folgeschäden, der am Universitätsklinikum Heidelberg koordiniert wird. Zentrales Ziel des SFB ist es zu verstehen, wann bei Diabetes mellitus Spätschäden auftreten, auch wenn der Blutzucker gut eingestellt ist. Der SFB verfolgt die Hypothese, dass Veränderungen von wichtigen körpereigenen Eiweißen durch reaktive Metabolite dafür verantwortlich sind. Reaktive Metabolite, die im Zentrum der Forschung stehen, sind Dicarbonyle wie zum Beispiel Methylglyoxal und reaktive Sauerstoffspezies. Weitere Ziele sind es  zu verstehen, wie diese reaktiven Metabolite bei Diabetes vermehrt entstehen, wie sie diabetische Folgeschäden verursachen und als Fernziel neue Therapieverfahren zu entwickeln, die vorhandene Spätschäden zurückbilden. www.klinikum.uni-heidelberg.de/Willkommen.132204.0.html

 

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. www.helmholtz-muenchen.de

 

Das Institut für Diabetes und Krebs (IDC) ist Mitglied des Helmholtz Diabetes Zentrums (HDC) am Helmholtz Zentrum München und Partner im gemeinsamen Heidelberg-IDC Translationalen Diabetes-Programm. Das Institut für Diabetes und Krebs ist eng in das Deutsche Zentrum für Diabetesforschung (DZD) und in den Sonderforschungsbereich (SFB) "Reaktive Metaboliten und Diabetische Komplikationen" an der Medizinischen Universität Heidelberg integriert. Das IDC erforscht die molekularen Grundlagen schwerer metabolischer Erkrankungen, wie dem Metabolischen Syndrom und Typ 2 Diabetes, und deren Bedeutung für die Tumorentstehung und -progression. www.helmholtz-muenchen.de/idc

 

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 40.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de


Literatur:
Niopek, K. et al. (2017): A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage. Cell Reports, DOI: 10.1016/j.celrep.2017.07.023


Kontakt Medien

Doris Rübsam-Brodkorb
Pressesprecherin
Leiterin Ukom
Tel.: 06221 56-5052
Fax: 06221 56-4544
Opens window for sending email E-Mail

Julia Bird
Stellvertretende Pressesprecherin
Tel.: 06221 56-7071
Fax: 06221 56-4544
Opens window for sending email E-Mail