Select languageSelect language
Institute of Physiology and Pathophysiology

Research Areas


Using skeletal muscle and neuronal preparations for the development of highly sensitive methods, we are seeking to expand state of the art technology in physical and biophysical sciences to the application in basic medical research.


The techniques used by our group include microscopic fluorescence imaging techniques such as, e.g., confocal/multiphoton imaging, ratiometric wide field fluorescence microscopy, microscopic laser application such as, e.g., UV-laser microdissection and IR-optical tweezers, patch clamp and several other voltage clamp techniques, mathematical modelling of cellular and subcellular dynamic processes, and basic image processing techniques especially for studying dynamic processes.

With the help of this broad spectrum of sensitive techniques many clinical relevant questions can be studied in its molecular origins. For example the investigations on Duchenne muscular dystrophy are utilizing the patch-clamp method and the various approaches for determining the total intracellular calcium turnover in diseased single muscle fibers.

The effects of volatile anaesthetics on the contractile proteins of skeletal and heart muscles, as well as on the ryanodine receptors can be ideally studied using permeabilised muscle fibres, with the contractile force and the calcium turnover as very sensitive indicators of cellular and subcellular effects of volatile anaesthetics.

The research projects of the group are embedded in a network of national and international cooperations, which further expand the interdisciplinary approaches of our research topics. This includes collaborative projects in molecular biology, biotechnology and physical chemistry.







Recent Publications

*

Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One. 2019 Jan 15;14(1):e0209228. doi: 10.1371/journal.pone.0209228. eCollection 2019.

*

Medikamentöse Varikosetherapie aus der Perspektive experimenteller Modelle. Praxis (Bern 1994). 2019 Jan;108(1):31-36. doi: 10.1024/1661-8157/a003147.

*

Selective vulnerability of αOFF retinal ganglion cells during onset of autoimmune optic neuritis. Neuroscience. 2018 Nov 21;393:258-272. doi: 10.1016/j.neuroscience.2018.07.040. Epub 2018 Aug 1.

*

Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J. 2018 Nov 1:fj201801594R. doi: 10.1096/fj.201801594R. [Epub ahead of print]

*

Synaptic entrainment of ectopic action potential generation in hippocampal pyramidal neurons.  J Physiol. 2018 Nov;596(21):5237-5249. doi: 10.1113/JP276720. Epub 2018 Sep 19.

*

The Long Noncoding RNA Cancer Susceptibility 9 and RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein L Form a Complex and Coregulate Genes Linked to AKT Signaling. Hepatology. 2018 Nov;68(5):1817-1832. doi: 10.1002/hep.30102. Epub 2018 Oct 12.

*

Reduction of Transplant Vasculopathy by Intraoperative Nucleic Acid-based Therapy in a Mouse Aortic Allograft Model. Thorac Cardiovasc Surg. 2018 Oct 23. doi: 10.1055/s-0038-1673633. [Epub ahead of print]

*

The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J. 2018 Jun 7:fj201800246R. doi: 10.1096/fj.201800246R. [Epub ahead of print]


Institute of
Physiology and Pathophysiology

Heidelberg University

Im Neuenheimer Feld 326

69120 Heidelberg

Germany

Phone:+49 6221 54-4035
Fax:+49 6221 54-4038
E-mail:sekretariat.hecker@
physiologie.uni-heidelberg.de