Select languageSelect language
Institute of Physiology and Pathophysiology

Decoy oligodeoxynucleotides for the prevention of heart failure

This page requires JavaScript for full functionality.

This research field aims at preclinically validating decoy oligodeoxynucleotides (ODNs) as a novel class of therapeutic drugs to prevent or treat heart failure.

    

Decoy ODNs, typically 15 to 20 base pairs short double-stranded DNA molecules, mimic the DNA binding site of specific regulatory proteins (transcription factors) in the genome. They interfere with the, in most cases, aberrant expression of disease-related genes by specifically binding to and, as a consequence, blocking the transcription factor controlling their expression.

 

Three different potential transcription factor drug targets are investigated. The most important criterion for choosing them is their proven involvement in the expression of genes primarily responsible for the development of various forms of terminal heart failure.

 

Members of the Division of Cardiovascular Physiology work on the design and optimization of the respective decoy ODNs. In collaboration with other groups at Heidelberg University  in vitro and in vivo model systems for the evaluation of their efficacy have been developed.

 

   

 

Aggregates of rat cardiomyocytes loaded with fluorescent decoy ODNs (red) (cell nuclei: blue)


Recent Publications

*

Respiration-Entrained Brain Rhythms Are Global but Often Overlooked. Trends Neurosci. 2018 Feb 8. pii: S0166-2236(18)30031-6. doi: 10.1016/j.tins.2018.01.007. [Epub ahead of print] Review.

*

Modulation of glutathione peroxidase activity by age-dependent carbonylation in glomeruli of diabetic mice. J Diabetes Complications. 2018 Feb;32(2):130-138. doi: 10.1016/j.jdiacomp.2017.11.007. Epub 2017 Nov 22.

*

Bringing European physiologists together. Acta Physiol (Oxf). 2018 Jan 29. doi: 10.1111/apha.13043. [Epub ahead of print]

*

Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia. 2018 Jan 19. doi: 10.1002/glia.23292. [Epub ahead of print]

*

Role of protein carbonylation in diabetes. J Inherit Metab Dis. 2018 Jan;41(1):29-38. doi: 10.1007/s10545-017-0104-9. Epub 2017 Nov 6.

*

Sensitive mass spectrometric assay for determination of 15-deoxy-Δ12,14-prostaglandin J2 and its application in human plasma samples of patients with diabetes. Anal Bioanal Chem. 2018 Jan;410(2):521-528. doi: 10.1007/s00216-017-0748-1. Epub 2017 Nov 16.

*

Magnolol inhibits venous remodeling in mice. Sci Rep. 2017 Dec 19;7(1):17820. doi: 10.1038/s41598-017-17910-0.

*

Hypertension-evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB J. 2017 Dec 5. pii: fj.201700384RR. doi: 10.1096/fj.201700384RR. [Epub ahead of print]

*

AP-1 Oligodeoxynucleotides Reduce Aortic Elastolysis in a Murine Model of Marfan Syndrome. Mol Ther Nucleic Acids. 2017 Dec 15;9:69-79. doi: 10.1016/j.omtn.2017.08.014. Epub 2017 Sep 20.

*

Allosteric inhibition of carnosinase (CN1) by inducing a conformational shift. J Enzyme Inhib Med Chem. 2017 Dec;32(1):1102-1110. doi: 10.1080/14756366.2017.1355793.

*

Transcription factor decoy technology: a therapeutic update. Biochem Pharmacol. 2017 Nov 15;144:29-34. doi: 10.1016/j.bcp.2017.06.122. Epub 2017 Jun 19. Review.


Institute of
Physiology and Pathophysiology

Heidelberg University

Im Neuenheimer Feld 326

69120 Heidelberg

Germany

Phone:+49 6221 54-4035
Fax:+49 6221 54-4038
E-mail:sekretariat.hecker@
physiologie.uni-heidelberg.de