Select languageSelect language
Institute of Physiology and Pathophysiology

Wagner Group

This page requires JavaScript for full functionality.

Group Members

Endothelial Cell-Platelet-Leukocyte Interaction in Vascular Remodelling: Role of CD40/CD154-Mediated Co-Stimulation

(Project C6/Hecker, SFB / Transregio 23 "Vascular Differentiation and Remodeling" Dies ist ein externer Link)

 

Pegah Khamehgir-Silz, Su-Hwan Kim (Research Training Group), Sebastian Lont, Cheryl Sultan, Andreas H. Wagner

 

CD40 is a cell surface receptor belonging to the tumour necrosis factor receptor family. It is constitutively expressed by antigen-presenting cells such as monocyte/macrophages but also by non-immune cells like endothelial cells. The CD40 ligand (CD154), originally identified as a surface marker of activated T cells, is also present on activated platelets which release numerous bioactive mediators capable of modulating innate immune cells, activating endothelial cells, and influencing systemic immune responses. In endothelial cells, CD40-CD154 interaction causes a marked increase in the expression of pro-inflammatory adhesion molecules and chemokines which, in turn, promote the homing and extravasation of T cells, namely type 1 T-helper (Th1) cells, and monocyte/macrophages. In the vessel wall, Th1 cell differentiation and activity may additionally be controlled by natural T-regulatory cells (Treg) which are frequently detected in early atherosclerotic lesions. Moreover, the transmigration of both types of lymphocytes as well as that of monocytes through the endothelial cell monolayer might be facilitated by platelets present at the endothelial cell junctions.

 

The aim of this project is to examine the relative extent by which CD40-CD154 driven endothelial cell-leukocyte, endothelial cell-platelet and/or platelet-leukocyte interactions contribute to the initiation and/or maintenance of atherosclerosis. It  focuses on the interaction of Th1 cells, Treg and monocytes with both endothelial cells and platelets as well as with each other, and primarily employs reverse genetics techniques in vitro (human cultured cells) and in vivo (mouse).


CD154 induced changes in gene expression in endothelial cells and their consequences for endothelial cell-leukocyte interaction.

Protein Oxidation in Vascular Cells as Protective Mechanism against Diabetic Angiopathy

(Projekt International Research Training Group 1874/1 "Diabetic Microvascular Complications") Dies ist ein externer Link)

 

Christoph Hangel, Tanja Wiedenmann, Andreas H. Wagner, Markus Hecker

 

It is virtually certain that reactive oxygen (ROS) and nitrogen (RNS) species contribute to diabetic vascular lesions. Hyperglycaemia, for example, leads to the protein carbonylation and nitration by increased oxidative and nitrosative stress, respectively. Glucose-derived dicarbonyl oxidation products such as methylglyoxal (MG) increase mitochondrial formation of superoxide anions (O2) which can react with nitrogen monoxide (NO) to form peroxynitrite (nitration) in endothelial cells, and, via hydrogen peroxide (H2O2) and the Fe2+-dependent Fenton reaction, hydroxyl radicals (carbonylation), respectively.


This project aims at analysing the role of oxidative protein modifications as a potential protective mechanism of vascular cells against late diabetic lesions, and diabetic macroangiopathy in particular.

Inhibition of Aortic Elastolysis by Decoy Oligodeoxynucleotides-Mediated Inhibition of Transcription of Matrix Metalloproteinases in the Fibrillin-1 Deficient Mouse mgR/mgR (Marfan model)

(supported by the B. Braun-Stiftung, Melsungen Dies ist ein externer Link)

 

Anca Remes, Andreas H. Wagner
Clinic for Cardiac Surgery, Heidelberg University Hospital: Rawa Arif, Klaus Kallenbach

 

Quite often vascular changes associated with the Marfan syndrome, such as aortic aneurysms or aortic dissections, threaten the lifes of those afflicted already in childhood. To date no causal therapy of this genetic disease of the connective tissue exists. The vascular component of the Marfan syndrome is pathophysiologically characterised by an abnormally high activity of matrix metalloproteinases (MMPs) in smooth muscle cells of the aortic wall. This group of enzymes causes elastolysis in the aortic media thereby contributing to the progressing destablisation of the vascular wall.

The homozygose fibrillin-1 deficient mouse (mgR/mgR) is an accepted small animal model for the Marfan syndrome. Similar to patients with the Marfan syndrome, it shows an elevated MMP activity in the smooth muscle cells of the aortic wall in combination with an age-dependent increased fragmentation of elastic fibres. Employing the Marfan mouse model, we want to inhibit the expression of MMP, and as a consequence reduce their activity, by incubating aortic fragments with decoy oligodeoxynucleotides (dODN) ex vivo

Gene Therapy of Transplantation Vasculopathy

(supported by the Dietmar Hopp Stiftung gGmbH, St. Leon-RotDies ist ein externer Link)

 

Andreas H. Wagner
Clinic for Cardiac Surgery, Heidelberg University Hospital: Rawa Arif, Klaus Kallenbach
Initernal Medicine III, Division of Cardiology, Angiology and Pneumology, Heidelberg University Hospital: Oliver Müller

 

Project description on the website of the Dietmar Hopp Foundation (in German).


Recent Publications

*

Alginate hydrogel polymers enable efficient delivery of a vascular-targeted AAV vector into aortic tissue. Mol Ther Methods Clin Dev. 2021 Jun 11;21:83-93. doi: 10.1016/j.omtm.2021.02.017. eCollection 2021 Jun 11.

*

Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol. 2021 Apr;112:137-144. doi: 10.1016/j.semcdb.2020.08.001. Epub 2020 Aug 15.

*

Editorial: Calcium Homeostasis in Skeletal Muscle Function, Plasticity, and Disease. Front Physiol. 2021 Mar 26;12:671292. doi: 10.3389/fphys.2021.671292. eCollection 2021.

*

Absence of neocytolysis in humans returning from a 3-week high-altitude sojourn. Acta Physiol (Oxf). 2021 Mar 17:e13647. doi: 10.1111/apha.13647. Online ahead of print.

*

Cardiomyocyte depolarization triggers NOS-dependent NO transient after calcium release, reducing the subsequent calcium transient. Basic Res Cardiol. 2021 Mar 17;116(1):18. doi: 10.1007/s00395-021-00860-0.

*

Induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs); generation and enrichment protocols, immature and mature structure and function. In: Recent Advances in iPSC-Derived Cell Types, Volume 4, 1st Edition (Birbrair A, ed.) Academic Press 2021, pp. 191-226. Paperback ISBN 9780128222300; eBook ISBN 9780128224540

*

Simulation of Air Travel-Related Irradiation Exposure of Cryopreserved Mouse Germplasm Samples. Biopreserv Biobank. 2021 Mar 1. doi: 10.1089/bio.2020.0046. Online ahead of print.

*

Anesthetics and plants: no pain, no brain, and therefore no consciousness. Protoplasma. 2021 Mar;258(2):239-248. doi: 10.1007/s00709-020-01550-9. Epub 2020 Sep 2.

*

Epigenetic regulation of cardiac electrophysiology in atrial fibrillation: HDAC2 determines action potential duration and suppresses NRSF in cardiomyocytes. Basic Res Cardiol. 2021 Feb 25;116(1):13. doi: 10.1007/s00395-021-00855-x. PMID: 33630168

*

Endothelial cells control vascular smooth muscle cell cholesterol levels by regulating 24-dehydrocholesterol reductase expression. Exp Cell Res. 2021 Feb 15;399(2):112446. doi: 10.1016/j.yexcr.2020.112446. Epub 2021 Jan 7.

*

A New Apparatus for Recording Evoked Responses to Painful and Non-painful Sensory Stimulation in Freely Moving Mice. Front Neurosci. 2021 Feb 12;15:613801. doi: 10.3389/fnins.2021.613801. eCollection 2021.

*

Inhibition of cyclooxygenase activity by diclofenac attenuates varicose remodeling of mouse veins. Vessel Plus 2021 Feb 7;5:7. doi: 10.20517/2574-1209.2020.52.

*

Integrated information theory does not make plant consciousness more convincing. Biochem Biophys Res Commun. 2021 Jan 21:S0006-291X(21)00057-7. doi: 10.1016/j.bbrc.2021.01.022. Online ahead of print.

*

AAV-mediated AP-1 decoy oligonucleotide expression inhibits aortic elastolysis in a mouse model of marfan syndrome. Cardiovasc Res. 2021 Jan 20:cvab012. doi: 10.1093/cvr/cvab012. Online ahead of print.

*

Assessable learning outcomes for the EU Education and Training Framework core and Function A specific modules: Report of an ETPLAS WORKING Group. Lab Anim. 2020 Dec 7:23677220968589. doi: 10.1177/0023677220968589. Online ahead of print.

*

Debunking a myth: plant consciousness. Protoplasma. 2020 Nov 16. doi: 10.1007/s00709-020-01579-w. Review. Online ahead of print.


Institute of
Physiology and Pathophysiology

Heidelberg University

Im Neuenheimer Feld 326

69120 Heidelberg

Germany

Phone:+49 6221 54-4056
Fax:+49 6221 54-6364
E-mail:susanne.bechtel@
physiologie.uni-heidelberg.de