Select languageSelect language
Institut für Physiologie und Pathophysiologie

Image Processing

The acquisition of raw image series with a microscope system is usually followed by methods of image processing. On the one hand, the purpose can be an improvement of the image quality, like noise reduction or deconvolution. On the other hand it can be an automated analysis of the experimental data. In our group, the programming work is mainly done with IDL software (Interactive data language).

 

Model-based noise reduction

Improving the signal-to-noise ratio, e.g. by using wavelet transforms for the detection of calcium sparks from the background noise.

 

Automated detection and analysis

Example: Development of a software to detect elementary calcium release events and analyze their frequency and morphology.

 

Deconvolution

A point source of light is displayed by the optics of a microscope in a characteristic way that is known as the "point spread function" (PSF). This PSF can be eather measured or calculated for the microscope system and then be used to compute undistorted data from the acquired images. The deconvolved images are clearer and less blurry.

 


Neue Publikationen

*

Strategy for marker-based differentiation of pro- and anti-inflammatory macrophages using matrix-assisted laser desorption/ionization mass spectrometry imaging. Analyst. 2018 Jul 20. doi: 10.1039/c8an00659h. [Epub ahead of print]

*

Improving electrical properties of iPSC-cardiomyocytes by enhancing Cx43 expression. J Mol Cell Cardiol. 2018 Jul;120:31-41. doi: 10.1016/j.yjmcc.2018.05.010. Epub 2018 May 16.

*

Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5556-E5565. doi: 10.1073/pnas.1801366115. Epub 2018 May 23.

*

The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J. 2018 Jun 7:fj201800246R. doi: 10.1096/fj.201800246R. [Epub ahead of print]

*

Persistent sodium current modulates axonal excitability in CA1 pyramidal neurons. J Neurochem. 2018 Jun 4. doi: 10.1111/jnc.14479. [Epub ahead of print]

*

Metabolic modulation of neuronal gamma-band oscillations. Pflugers Arch. 2018 May 28. doi: 10.1007/s00424-018-2156-6. [Epub ahead of print]

*

The lncRNA CASC9 and RNA binding protein HNRNPL form a complex and co-regulate genes linked to AKT signaling. Hepatology. 2018 May 23. doi: 10.1002/hep.30102. [Epub ahead of print]

*

Early Blood-Brain Barrier Disruption in Ischemic Stroke Initiates Multifocally Around Capillaries/Venules. Stroke. 2018 Jun;49(6):1479-1487. doi: 10.1161/STROKEAHA.118.020927. Epub 2018 May 14.

*

Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol. 2018 Jun;16:113-122. doi: 10.1016/j.redox.2018.02.018. Epub 2018 Mar 1.

*

CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients. J Inflamm (Lond). 2018 May 16;15:10. doi: 10.1186/s12950-018-0186-7. eCollection 2018.

*

In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways. Sci Rep. 2018 May 2;8(1):6886. doi: 10.1038/s41598-018-25061-z.

*

Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia. 2018 May;66(5):920-933. doi: 10.1002/glia.23292. Epub 2018 Jan 19.

*

Parallel detection of theta and respiration-coupled oscillations throughout the mouse brain. Sci Rep. 2018 Apr 24;8(1):6432. doi: 10.1038/s41598-018-24629-z.

*

Endothelial progenitor cells accelerate endothelial regeneration in an in vitro model of Shigatoxin-2a-induced injury via soluble growth factors. Am J Physiol Renal Physiol. 2018 Mar 7. doi: 10.1152/ajprenal.00633.2017. [Epub ahead of print]


Institut für
Physiologie und Pathophysiologie

Universität Heidelberg

Im Neuenheimer Feld 326

69120 Heidelberg

Telefon:+49 6221 54-4035
Telefax:+49 6221 54-4038
E-Mail:sekretariat.hecker@
physiologie.uni-heidelberg.de