Mastodon
Institute Physiologie und… Herz- und… Markus Hecker Forschung Hintergrund:…

Forschung

Hintergrund: Mechanische Kräfte im Gefäßsystem

Im Blutgefäß spielen mechanische Reize, vor allem bedingt durch die auf Endothelzellen einwirkende laminare Schubspannung und die Laplace Wandspannung, die sowohl Endothel- als auch glatte Muskelzellen beeinflusst, eine wichtige Rolle bei der Regulation des Blutflusses und der dauerhaften Homöostase des Gefäßsystems.

Primäre Kräfte, die Gefäßtonus und vaskuläre Homöostase modulieren. Während die laminare Schubspannung (τ) durch Blut-Viskosität (η), laminare Strömung (Q) und den Kehrwert des Gefäßradius (r) definiert wird, hängt die Laplace Wandspannung vom transmuralen Druck (Ptm), Radius (r) und Kehrwert der Wanddicke des Gefäßes (d) ab.
nach Pfisterer L et al. Pathogenesis of varicose veins - lessons from biomechanics. Vasa. 2014 March;43(2):88-99.

Da beide Kräfte entgegengesetzt vom Gefäßdurchmesser abhängen, regulieren sie den Gefäßtonus und damit den Blutfluss als Antagonisten. Dies ist bis in die molekularen Mechanismen gut untersucht, die z. B. auf Stickstoffmonoxid (NO) und dem gefäßverengenden Peptid Endothelin-1 basieren. Aber obwohl die langfristigen Auswirkungen einer veränderten Schub- und Wandspannung, wie sie z. B. bei der druckinduzierten arteriellen Hypertrophie/Hyperplasie bei Patienten mit Bluthochdruck zu beobachten sind, auf die Struktur der Gefäßwande gut dokumentiert sind, sind die Signalwege, die diesen Prozessen zugrunde liegen, noch nicht charakterisiert. Unsere Gruppe konzentriert sich auf zwei Projekte, um die Auswirkungen von Wandspannung und laminarer Schubspannung auf die Genexpression und Regulation des Phänotyps der Endothel- und glatten Muskelzellen zu analysieren.